Joint sparse model-based discriminative K-SVD for hyperspectral image classification
نویسندگان
چکیده
Sparse representation classification (SRC) is being widely investigated on hyperspectral images (HSI). For SRC methods to achieve high classification performance, not only is the development of sparse representation models essential, the designing and learning of quality dictionaries also plays an important role. That is, a redundant dictionary with well-designated atoms is required in order to ensure low reconstruction error, high discriminative power, and stable sparsity. In this paper, we propose a new method to learn such dictionaries for HSI classification. We borrow the concept of joint sparse model (JSM) from SRC to dictionary learning. JSM assumes local smoothness and joint sparsity and was initially proposed for classification of HSI. We leverage JSM to develop an extension of discriminative K-SVD for learning a promising discriminative dictionary for HSI. Through a semi-supervised strategy, the new dictionary learning method, termed JSM-DKSVD, utilises all spectrums over the local neighbourhoods of labelled training pixels for discriminative dictionary learning. It can produce a redundant dictionary with rich spectral and spatial information as well as high discriminative power. The learned dictionary can then be compatibly used in conjunction with the established SRC methods, and can significantly improve their performance for HSI classification.
منابع مشابه
Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملHyperspectral Image Mixed Noise Reduction Based on Improved K-svd Algorithm
We propose an algorithm for mixed noise reduction in Hyperspectral Imagery (HSI). The hyperspectral data cube is considered as a three order tensor. These tensors give a clear view about both spatial and spectral modes. The HSI provides ample spectral information to identify and distinguish spectrally unique materials, thus they are spectrally over determined. Tensor representation is three ord...
متن کاملHyperspectral Image Segmentation with Discriminative Class Learning
This paper presents a Bayesian approach to hyperspectral image segmentation that boosts the performance of the discriminative classifiers. This is achieved by combining class densities based on discriminative classifiers with a Multi-Level Logistic Markov-Gibs prior. This density favors neighboring labels of the same class. The adopted discriminative classifier is the Fast Sparse Multinomial Re...
متن کاملDiscriminative and Compact Dictionary Design for Hyperspectral Image Classification using Learning VQ Framework Sparse representation provides an efficient description for high-dimensional Hyperspectral Imagery
Discriminative and Compact Dictionary Design for Hyperspectral Image Classification using Learning VQ Framework Report Title Sparse representation provides an efficient description for high-dimensional Hyperspectral Imagery (HSI) and also encodes discriminative information useful for classification. However, due to the large size of typical HSI images, the naive way to construct a dictionary wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 133 شماره
صفحات -
تاریخ انتشار 2017